1622

The Formation of $[Ir(CO)CI_2(PEt_3)_2(NF_2)]$ and its Rhodium Analogue: Complexes containing the Novel Difluoroamido Ligand

Russell W. Cockman,^a E. A. V. Ebsworth,^a and John H. Holloway^b

^a Chemistry Department, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K. ^b Department of Chemistry, The University, Leicester LE1 7RH, U.K.

Chlorodifluoroamine reacts at 190 K in CH_2CI_2 with $[M(CO)CI(PEt_3)_2]$ (M = Ir or Rh) to give $[M(CO)CI_2(PEt_3)_2(NF_2)]$, characterised by ¹⁹F and ³¹P n.m.r. spectroscopy (the ¹⁵N derivative was also obtained for M = Ir); the novel

complexes decompose in solution at temperatures above 240 K, the products of decomposition including N₂F₄.

Transition metal complexes containing fluorinated ligands have been known for many years, but almost all the ligands involved contain carbon (such as CF_3^1 or $C_2F_4^2$) or phosphorus (such as $PF_{2,3} PF_{3,4}$ or $PF_{4,5}$). With the exception of [ReF₅NF]⁶ there have been no reports of complexes containing fluorine bound to nitrogen. Here we present spectroscopic evidence to show that NF₂Cl undergoes oxidative addition with [M(CO)Cl(PEt_3)_2] to form novel complexes containing the terminal NF₂ ligand, equation (1).

 $\begin{array}{ll} trans-[M(CO)Cl(PEt_3)_2] + NF_2Cl \rightarrow \\ (1) \ M = Ir & [M(CO)Cl_2(PEt_3)_2(NF_2)] & (1) \\ (2) \ M = Rh & (3) \ M = Ir \\ (4) \ M = Rh \end{array}$

The ³¹P-{H}[†] n.m.r. spectrum of a solution of (1) with a slight molar excess of NF₂Cl in CH₂Cl₂ at 190 K showed that all (1) had been consumed; significant amounts of [Ir(CO)Cl₃-(PEt₃)₂], identified by its n.m.r. parameters, had been formed, together with a new species whose n.m.r. spectra showed it to be (3). The P resonance of the new species (δ -5.83 p.p.m.) was in the region associated with PEt₃ complexes of Ir^{III}, and it showed a narrow triplet coupling (18 Hz) that we assign to ³J(PF). The F-{H} spectrum showed that significant amounts of N₂F₄ had been formed, and some NF₂Cl remained unreacted; in addition, we

observed a new triplet resonance (δ 92.3 p.p.m., *J* 18 Hz) in a region associated with NF groups but substantially to high frequency of the F resonances in Ir–F or Rh–F complexes.⁷ Reaction between (**2**) and NF₂Cl carried out under the same conditions gave very similar results; the P-{H} spectrum showed a resonance (δ 23.8 p.p.m.) with doublet coupling to ¹⁰³Rh [¹J(PRh) 80 Hz], each line of which showed a narrower triplet splitting (22 Hz) which we assign to ³J(PF). The F-{H} spectrum contained a triplet (δ 88.0 p.p.m., *J* 22 Hz) with a narrower doublet coupling (7 Hz) that we assign to ²J(FRh).

To confirm that the resonances in the ¹⁹F spectra around 90 p.p.m. were due to NF₂ groups, we synthesised 95%-enriched ¹⁵NF₂Cl from ¹⁵NF₂CONH₂⁸ and aqueous ClO⁻,⁹ and observed its reaction with (1) under the conditions described above. The P-{H} spectrum showed the triplet at -5.85p.p.m. $[^{3}J(PF) 17 Hz]$, but each line showed an additional doublet splitting of 4 Hz, assigned to coupling between P and a single ^{15}N nucleus. In the F-{H} spectrum, the resonance at 92.3 p.p.m. showed a wide doublet coupling of 104 Hz, which we assign to ${}^{1}J(NF)$, in addition to the triplet coupling due to ³*J*(PF). The ¹⁵N[†] spectrum showed a triplet (J = 104 Hz) at δ 69.2 p.p.m.; ²J(NP) was not resolved because the signal : noise ratio was not good enough. The magnitude of ${}^{1}J(NF)$, which should be compared with the value of 176 Hz observed for ¹⁵NF₂Cl, leaves no doubt that the fluorine atoms in the new species are bound to nitrogen. The triplet due to ${}^{3}J(PF)$ in the P-{H} spectrum shows that the species contains two equivalent fluorines; the corresponding triplet in the F-{H} spectrum shows that it also contains two equivalent Et₃P groups. The doublet in the P-{H} spectrum of the ¹⁵N species,

 $[\]dagger$ N.m.r. standards: all n.m.r. shifts are reported as positive to high frequency of 85% H₃PO₄ (for ³¹P), CCl₃F (for ¹⁹F), and MeNO₂ (for ¹⁵N).

due to ${}^{2}J(PN)$, confirms the presence of a single NF₂ group, and the doublet couplings in P and F spectra of (4) show that one metal atom is present. While we have no direct evidence for the presence of the two Cl and one CO ligands in (3) and (4), the value of ${}^{1}J(PRh)$ for (4) is consistent¹⁰ with 6-co-ordinated Rh^{III} but not with 5-co-ordinated Rh^I, thus excluding a formulation involving a donor link between NF₂Cl and the metal. The process of oxidative addition of N–Cl to the starting materials is logical and natural, even if it has not been reported before.

Unfortunately these products are very unstable thermally, and do not survive for more than a few minutes at temperatures above 240 K, though they are stable indefinitely at 190 K. A major decomposition product is N_2F_4 .

We are grateful to Messrs Johnson Matthey for lending us chemicals.

Received, 30th July 1986; Com. 1090

References

- 1 E. M. Hyde, J. D. Kennedy, B. L. Shaw, and W. McFarlane, J. Chem. Soc., Dalton Trans., 1977, 1571.
- 2 M. Green and S. H. Taylor, J. Chem. Soc., Dalton Trans., 1975, 1128.
- 3 E. A. V. Ebsworth, R. O. Gould, N. T. McManus, D. W. H. Rankin, M. D. Walkinshaw, and J. D. Whitelock, J. Organomet. Chem., 1983, 249, 227.
- 4 T. Kruck and K. Baur, Chem. Ber., 1965, 98, 3070.
- 5 E. A. V. Ebsworth, J. H. Holloway, N. J. Pilkington, and D. W. H. Rankin, Angew. Chem., Int. Ed. Engl., 1984, 23, 630.
- 6 J. Fawcett and R. D. Peacock, J. Chem. Soc., Chem. Commun., 1982, 958.
- 7 R. W. Cockman and E. A. V. Ebsworth, unpublished observations.
- 8 C. O. Parker and J. P. Freeman, Inorg. Synth., 1970, 12, 307.
- 9 E. W. Lawless and I. C. Smith, 'Inorganic High-energy Oxidizers,' Edward Arnold, London, 1968, p. 82.
- T. H. Brown and P. J. Green, J. Am. Chem. Soc., 1970. 92, 2359;
 E. A. V. Ebsworth, M. R. de Ojeda, and D. W. H. Rankin, J. Chem. Soc., Dalton Trans., 1982, 1513.